

	TOPIC PLAN				
Partner organization	Belgrade Metropolitan University				
Торіс	Blockchain Technology in Data Protection				
Lesson title	Elliptic Curve Cryptography				
Learning objectives	Students can understand the definition of elliptic curves Students can understand the propertied of point addition in elliptic curves Students can develop programs for ECC key exchange Students can apply elliptic curve cryptography in Diffie-Hellman key exchange Students can apply ECC in blockchain technology	Methodology Modeling Collaborative learning Project based learning Problem based learning Strategies/Activiti es Graphic Organizer Mink/Pair/Share Discussion questions			
Aim of the lecture / Description of the practical problem	The aim of the lecture is to introduce students to the basic principles of elliptic curve cryptography (ECC). Students firstly review the discrete logarithm problem in asymmetric cryptography, with an overview of the Diffie-Hellman key-exchange algorithm, which focuses on modular arithmetic. Afterwards, elliptic curves with their properties are described. The key exchange algorithm is then applied using multiplicative addition of points. Finally, students are given examples of the application of elliptic curve cryptography in Blockchain technology. Students are tasked with writing a computer program which displays elliptic curves with different parameters, and writing a program for key exchange using elliptic curve cryptography.				
Previous knowledge assumed:	Symmetric cryptography Asymmetric cryptography Basics of Linear algebra Basics of Calculus Programming in Python/Java	Assessment for learning Observations Conversations Work sample Conference Check list Diagnostics			

Co-funded by the Erasmus+ Programme of the European Union

Introduction	Asymmetric cryptography	
	Asymmetric cryptography	
/ Theoretical basics	The basic concept is that a public key may exist to encrypt the data, while a private key is used to decrypt the data. This concept can be achieved with a set of algorithms that can be easy to implement in one direction, while it can be extremely difficult to implement in the inverse direction. The first, and still most used algorithm is the RSA algorithm. The security of this algorithm relied on simple computation in one side (the multiplication of large prime numbers) while the inverse (factorization) is extremely complex. After the RSA algorithm, scientists have examined other mathematical-based cryptographic algorithms, besides factorization, which can be used in asymmetric cryptography.	Assessment as learning Self-assessment Peer-assessment Presentation Graphic Organizer Momework
	Let a and b be real numbers, and let N be natural number. The security of RSA relies on the fact that it is difficult to find x such as $x^{b} \equiv b \pmod{N}$	Assessment of learning Test Quiz
	Such a problem can theoretically be solved with Shore's algorithm, which predicts that the factorization can be done in polynomial time if quantum computers are used.	□ Presentation □ Project □ Published work
	Weierstrass form of elliptic curves	
	An elliptic curve E has a Weierstrass form has the following form: $E: y^2 = x^3 + ax + b$,	
	where constants a and b fulfil the condition:	
	$4a^3 + 27b^2 \neq 0$	
	This condition is the cube polynomial non-zero discriminate condition, which guarantees three different roots, which can in general be complex numbers. A Weierstrass clliptic curve is shown in Figure 1.	

ordered pair (G, B) is called a groupoid.

- Let G be a nonempty set and let B be a binary operation in G. An

- A groupoid (G, B) is called a semigroup if the operation B is associative.

- An element e of a groupoid (semigroup) is called a unit or neutral element if x B e = e B x = x for every x belonging to the groupoid (semigroup).

- Let us have a groupoid with unit element. An element y is an inverse element of x, if x B y = y B x = e. An element is invertible if it has an inverse element. As a consequence, it is easy to prove that in a semigroup with unit element, each element has exactly one inverse element, or none at all.

If the points Ti = (xi, yi) and Tj = (xj , yj) are known, where to start with the case where xi /= xj and yi /= yj , then the equation of the line through those points is:

$$y = m_{ij} (x - x_i) + y_i = m_{ji} (x - x_j) + y_j$$

where

$$m_{ij} = \frac{y_i - y_j}{x_i - x_j} = \frac{y_j - y_i}{x_j - x_i} = m_{ji}$$

and the coefficient of the direction of the straight line If we replace this equation with y and the expression for the elliptic curve, we get:

$$y^{2} = m_{ij}^{2} x^{2} + 2m_{ij} \left(y_{i} - m_{ij} x_{i} \right) x + \left(y_{i} - m_{ij} x_{i} \right)^{2} = x^{3} + ax + b$$

$$\Rightarrow x^{3} - m_{ij}^{2} x^{2} + \left(a - 2m_{ij} \left(y_{i} - m_{ij} x_{i} \right) \right) x - \left(\left(y_{i} - m_{ij} x_{i} \right)^{2} - b \right) = 0$$

After arranging the expression, you will get a point that lies on the straight line and intersects the elliptic curve, i.e. will get:

$$y'_{k} = m_{ij} (x_{k} - x_{i}) + y_{i} = m_{ji} (x_{k} - x_{j}) + y_{j}$$

The point (xk , yk) belongs to the elliptic curve, so due to the symmetry


```
public class Point {
    public double x, y;
     public Point(double x, double y) {
         this.x = x;
         this.y = y;
     }
     @Override
     public String toString() {
         return x + " - " + y;
     }
     class
              for
                     elliptic
                               curve
                                        cryptography
                                                        called
А
EllipticCurveCryptography is required.
In it, we have two main parameters called a and b, which correspond to
the equation of an elliptic curve of the Weistrass type.
The Bitcoin network takes the values a = 0, b = 7 for parameters, so
their
         equation
                   is: y^2 = x^3
                                                     +
                                                           7.
122
 * @author Bojana
 */
public class EllipticCurveCryptography {
    public double a;
    public double b;
    public EllipticCurveCryptography(double a, double b) {
        this.a = a;
        this.b = b;
     τ
A point addition function called point addition is required. Its input
arguments are the points P and Q, so we need to have their
coordinates, which are also included in the given points method:
```



```
public Point point addition(Point P, Point Q) {
      double x1 = P.x;
      double y1 = P.y;
      double x^2 = Q.x;
      double y_2 = Q.y;
      double m:
      if (x1 == x2 && y1 == y2)
          m = (3*x1*x1+a) / (2*y1);
      else
          m = (y2-y1) / (x2-x1);
      double x3 = m*m - x1 - x2;
      double y3 = m^*(x1-x3) - y1;
      return new Point (x3, y3);
 }
There are two cases. Addition of points when point P is not the same
as point Q, that is, they do not have the same coordinates, and the
method of duplicating points when the coordinates of point P are equal
in value to the coordinates of point Q. In the implementation, a check
was made whether x1 = x2 and whether y1 = y2.
If the points are different, the addition operation is applied.
After checking, the x3 and y3 coordinates are updated, after which the
function returns a new point that was generated with the x3 and y3
coordinates.
 public Point point addition (Point P, Point Q) {
     double x1 = P.x;
     double y1 = P.y;
     double x^2 = Q.x;
     double y_2 = Q.y;
     double m;
     if (x1 == x2 && y1 == y2)
          m = (3*x1*x1+a) / (2*y1);
      else
          m = (y2-y1) / (x2-x1);
```


Materials / equipment / digital tools / software	The materials for learning are given as a part of references of the end from this topic plan; Equipment: classroom, board, chalk; Digital tools: computer with programming languages Python and Java, projector for slides;			
Consolidatio n	 The teacher's discussion with the students through appropriate questions; Independent solving of simple tasks by the students under the supervision of the teacher; Given of examples by the teacher for introducing a new concept in a cooperation and a discussion with the students; Assignment of homework by the teacher with a time limit until the next class. 			
Reflections and next steps				
Activities that worked Parts to be revisited				
After the class, the teacher according to his personal perceptions regarding the success of the class fills in this part.		Through the success of the homework done by the students, questions and discussion at the beginning of the next class, the teacher comes to the conclusion which parts of this class should be revised.		
References				
 Nemanja Zdravkovic, IT475 - Blockchain Technology in Data Protection, Authorized Lectures on Metropolitan University Belgrade eLearning platform – LAMS, 2021. D. Hankerson, A. J. Menezes, S. Vanstone, Guide to Elliptic Curve Cryptography, Springer, 2004. I. Bashir, Mastering Blockchain, Packt Publishing, 2017. Wolfram Demonstration Project, Addition of Points on an Elliptic Curve over the Reals, https://demonstrations.wolfram.com/AdditionOfPointsOnAnEllipticCurveOverTheReals/ 				